

NASA ISRO (Indian Space Research Organization) Synthetic Aperture Radar: NISAR Mission Overview

Prof. Kyle McDonald

Earth and Atmospheric Sciences
City College of New York
Carbon Cycle and Ecosystems
Jet Propulsion Lab, Caltech
NISAR Science Team
Ecosystems Focus Area
kmcdonald2@ccny.cuny.edu

Dr. Gerald BawdenNISAR Program Scientist
NASA Headquarters

Dr. Paul Rosen NISAR Project ScientistJet Propulsion Laboratory
California Institute of Technology

NASA Biodiversity and Ecological Conservation Science Team Meeting College Park, Maryland May 7 -8, 2023

NISAR Science: Capturing a Dynamic Earth

Earthquake Dynamics, CA

Wetland Inundation, India

Sep 7 7 PM Sep 8 7 AM Disaster Monitoring: Bobcat Fire, Pasadena NASA / JPL-Caltech / ARIA Product Cortains modified Capernas Sented data (2020) Susmeption Depth Landar Cap

Key Scientific Objectives

Dynamics of Ice: Ice sheets, Glaciers, and Sea Level

 Understand the response of ice sheets and glaciers to climate change and the interaction of sea ice and climate

Ecosystems and Biomass Change

 Understand the dynamics of carbon storage and uptake in wooded, agricultural, wetland, and permafrost systems

Solid Earth Deformation: Hazard Response

- Improve knowledge for forecasts of earthquakes, volcanic eruptions, and landslides
- · Coastal Processes: India
 - Understand the state of important mangroves
 - Understand how coastlines are changing around India
 - Determine shallow bathymetry around India
 - Assess variation of winds in India's coastal waters

Key Applications Objectives

- Understand societal impacts of dynamics of water, hydrocarbon, and sequestered CO₂ reservoirs
- Enhance agricultural monitoring capability in support of food security objectives
- Apply NISAR's unique data sets to explore the potentials for urgent response and hazard mitigation

NASA-ISRO SAR (NISAR) Mission

Solid Earth, Ecosystems, Cryosphere Science and Applications Mission

NISAR Characteristic:	Enables:
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (9 cm wavelength)	Sensitivity to lighter vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/ Dual /Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling/time series
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
L/S-band > 50/10% observation duty cycle	Complete land/ice coverage
Left/Right pointing capability	Polar coverage: north & south

L- and S-band Wavelength

Polarimetry

Repeat Pass InSAR

Polarimetric Diversity

Repeat Pass Interferometry

Current Observation Plan

Greenland 80MHz SP LSAR Greenland 25MHz CP & 37.5MHz HH SSAR

SP – Single Pol

DP - Dual Pol

QP - Quad Pol

NISAR Operations Overview

SNWG Users

NASA &

ISRO

Joint

Science

Team

Science Data Products **Amazon Web Services**

Science Data Processing (JPL) and

Data Archive & Distribution (ASF DAAC)

Engrg
Telemetry
& GPS

Reference Observation Plan (6 mon updates)

Urgent Response Requests L-SAR Radar Payload Operations (JPL)

Engrg Telemetry Coord Obs Plan Radar Payload Commanding & Kaband Scheduling

Maneuver

Design

ISRO Mission Operations (ISTRAC)
(Bangalore)

S-SAR Operations Support (SAC)
(Ahmedabad)

Science Data Products S-SAR Data Processing Archive (NRSC) (Hyderabad)

L-SAR Data & Telemetry & GPS

NEN Data Acquisition Processing and Handling Environment (DAPHNE)

Near Earth Network

NEN Ka Stations Fairbanks, Svalbard, Wallops, Punta Arenas L-SAR Data

Up to 4 Gb/sec; ~27 passes/day 35 Tb daily average volume (including 9 Tb SNWG)

S-band TT&C Uplink 4 Kbps Downlink 4 & 32 Kbps

Mauritius, Lucknow, Bangalore, and Antarctica

ISRO S-Band Stations (ISTRAC)

S-SAR Data

Up to 2.9 Gb/sec; 8 passes/day 8 Tb daily average volume

S-SAR Data & Telemetry

ISRO Ka-band Stations (Shadnagar, Antarctica)

Sun-synchronous frozen orbit
747±20 km altitude
6 PM mean local descending node
100 minute period
12 day repeating ground track

NISAR Science Data Analysis and Archive Approach

NISAR Cal/Val Overview

Instrument

- Image calibration schedule during service 'commissioning' phase and the first 5 months of operation
- Corner Reflector Sites in Oklahoma, Alaska, & India
- UAVSAR phase calibration plan is being developed

Science Cal/Val

- Each science discipline developed a Cal/Val plan for their Level 3,4 activities.
- Ecosystems: there are >100 Cal/Val sites globally and include collaborations with ISRO, NASA ABoVE, NSF NEON, University of Oklahoma, Alaska Satellite Facility, UNAVCO, NSF GAGE, University of Nevada Reno, JECAM, ESA Biomass, US Dept of Ag.
- Validation scientific requirements workflow will be available in Jupyter notebooks

Measuring the Global Terrestrial Carbon Cycle: NISAR Biomass areas (< 100 tons/ha)

The global distribution of regions dominated by with woody biomass < 100 Mg/ha

Regions with AGB < 100 Mg/ha 50% of area

Regions with AGB > 100 Mg/ha 50% of area

Regions with AGB < 20 Mg/ha 50% of area

Regions with No woody vegetation

Open Water

Monitoring Global Crop Area

NISAR frequent SAR observations and spatial resolution will allow monitoring crop areas globally

- Crops cover 11% of the Earth's land surfaces and are expanding regionally in response to climate change and food security.
- Identification of crop area is a precursor to crop classification and allows basic monitoring of agricultural resources and outputs.
- Changes in observed radar backscatter from NISAR time series data throughout the growing season is an indicator of active landcover management & crop area.

Coefficient of Variation

Amazon Full-Basin Inundation Datasets: PALSAR 2

2014/2015 maximum inundation extent

Light blue: inundated vegetation

Purple: submerged vegetation

Blue: open water

2015/2016 minimum inundation extent

Grey: non-flooded

White: no data

Rosenqvist et al., 2020.

Coastal Wetlands: Tidal Process Characterization with PALSAR

Wheeler Marsh Inundation product validation with water level sensors

PALSAR/PALSAR-2 HH Backscatter Imagery (ordered by increasing tidal stage)

^{*} colored pixels representing water depth. Precision DEM supports inundated volume assessment

https://nisar.jpl.nasa.gov/ Lamb, et all., 2019, 2021

Resources: Application White Papers

Launch Window Opens January 29, 2024

Satish Dhawan Space Center, India

NISAR JPL and ISRO Teams along with the U.S. Air Force crew celebrate the arrival of NISAR in India

March 6th

https://nisar.jpl.nasa.gov/

h4